Q1.

	5	(a)		the (value of the) direct current that dissipates (heat) energy at the same rate (in a resistor) allow 'same power' and 'same heating effect'		M1 A1	[2]
		(b)		$\sqrt{2I_{ms}} = I_0$		B1	[1]
		(c)	(i) (ii)	power $\propto I^2$ or $P = I^2R$ or $P = VI$ ratio = 2.0 (allow 1 s.f.) advantage: e.g. easy to change the voltage disadvantage: e.g. cables require greater insulation		C1 A1 B1	[2]
				rectification – with some justification		B1	[2]
		(d)	(i) (ii)	3.0 A (allow 1 s.f.) 3.0 A (allow 1 s.f.)	Total	A1 A1	[2] [9]
Q2.							
4	(a)	(a) r.m.s. output = $9/\sqrt{2}$ or peak input = $230\sqrt{2}$ $N_S/N_P = V_S/V_P$ $N_S = 138 \rightarrow 140$ turns				1 1	[3]
	(b)	(i) !	four d giving	liodes correctly positioned regardless of output polarity correct output polarity (all 'point to left')	M ²		[2]
		(ii)	capac	citor shown in parallel with R	B	1	[1]
	(c)	(i)	time t	1 to time t ₂	В	1	[1]
				h: same peak values reduced and reasonable shape	M [*]		[2]
Q3.							
6	(a)			des correct to give output, regardless of polarity for correct polarity	M		[2]
	(b)	$V_0 =$	√2 ×			:1 :1	
		ratio		9.0 / ($\sqrt{2} \times 240$) 1/38 or 1/37 or 0.027	A	.1	[3]

Q4.

7	(a)	eitl or	her	the value of steady / constant voltage that produces same power (in a resistor) as the alternating voltage if alternating voltage is squared and averaged the r.m.s. value is the square root of this averaged value	M1 A1 (M1) (A1)	[2]
	(b)) (i)	220) V	A1	[1]
		(ii)	156	SV	A1	[1]
		(iii)	60 I	Hz	A1	[1]
	(c)	po	wer =	$= V_{ms}^2 / R$ $6^2 / 1500$	C1	
			16 Ω		A1	[2]
Q5.						
6	(a)	(i)	to co	oncentrate the (magnetic) flux / reduce flux losses	B1	[1]
		(ii)		nging flux (in core) induces current in core ents in core give rise to a heating effect	M1 A1	[2]
	(b)	(i)		.f. induced proportional to of change of (magnetic) flux (linkage)	M1 A1	[2]
		(ii)	e.m.	netic flux in phase with / proportional to e.m.f. / current in primary coil .f. / p.d. across secondary proportional to rate of change of flux .m.f. of supply not in phase with p.d. across secondary	M1 M1 A0	[2]
	(c)	(i)		same power (transmission), high voltage with low current low current, less energy losses in transmission cables	B1 B1	[2]
		(ii)	volta	age is easily / efficiently changed	B1	[1]
Q6.						
6	(a) (i)		f = 380 quency = 60 Hz	C1 A1	[2]
		(ii)		$_{MS} \times \sqrt{2} = I_0$ $_{MS} = 9.9 / \sqrt{2}$	C1	
			1RN	$= 7.0 \mathrm{A}$	A1	[2]
	(b			$=I^2R$ 0 / 7.0 ²	C1	
			= 8.2		A1	[2]

```
6 (a) (i) peak voltage = 4.0 V
                                                                                                               A1
                                                                                                                              [1]
                (ii) r.m.s. voltage (= 4.0/\sqrt{2}) = 2.8 V
                                                                                                               A1
                                                                                                                              [1]
               (iii) period T = 20 \,\mathrm{ms}
                                                                                                               M1
                     frequency = 1/(20 \times 10^{-3})
                                                                                                               M1
                     frequency = 50 Hz
                                                                                                               A<sub>0</sub>
                                                                                                                              [2]
           (b) (i) change = 4.0 - 2.4 = 1.6 \text{ V}
                                                                                                               A1
                                                                                                                              [1]
               (ii) \Delta Q = C\Delta V or Q = CV
= 5.0 \times 10^{-6} \times 1.6 = 8.0 \times 10^{-6} C
                                                                                                               C<sub>1</sub>
                                                                                                               A<sub>1</sub>
                                                                                                                              [2]
               (iii) discharge time = 7 ms
                                                                                                               C1
                     current = (8.0 \times 10^{-6}) / (7.0 \times 10^{-3})
= 1.1(4) \times 10^{-3} A
                                                                                                               M1
                                                                                                                              [2]
                                                                                                               A<sub>0</sub>
           (c) average p.d. = 3.2 V
                                                                                                               C<sub>1</sub>
                resistance = 3.2 / (1.1 \times 10^{-3})
                             = 2900 \Omega (allow 2800 \Omega)
                                                                                                               A1
                                                                                                                              [2]
Q8.
       (a) (i) to reduce power loss in the core
                                                                                                                       B1
                   due to eddy currents/induced currents
                                                                                                                       B1
                                                                                                                              [2]
             (ii) either
                              no power loss in transformer
                              input power = output power
                                                                                                                       B1
                                                                                                                              [1]
                   or
                        r.m.s. voltage across load = 9.0 \times (8100 / 300)
                                                                                                                      C1
        (b) either
                         peak voltage across load = \sqrt{2} \times 243
                                                           = 340 \text{ V}
                                                                                                                       A1
                                                                                                                              [2]
                         peak voltage across primary coil = 9.0 \times \sqrt{2}
              or
                                                                                                                       (C1)
                         peak voltage across load
                                                                    = 12.7 \times (8100/300)
                                                                    = 340 V
                                                                                                                      (A1)
```

Q9.

(a)						[2]
(b)	(i)	posit	tive	terminal identified (upper connection to load)	B1	[1]
	(ii)	ratio (V _P = (ratio	= 24 = 36 = V _R = 2	40 √2 / 9 8 _{MS} / √2 gives ratio = 18.9 and scores 1/3) 240 / 9 = 26.7 scores 1/3)	C1 C1 A1	[3]
(c)					B1	[1]
	(ii)	sketo	ch:	same peak value at start of discharge correct shape between one peak and the next	M1 A1	[2]
(a)					ı	[2]
(b)	(i	i)1	5.4	V (allow ± 0.1 V)		
	(i	i)2	Ī	= 5.4/1.5 x 10 ³		
	(i	i)3	tim	e = 0.027 s	[[4]
	(i	ii)1		= 3.6 x 10 ⁻³ x 0.027		
	(i	ii)2		$= (9.72 \times 10^{-5})/1.2$		[4]
(c)	(c)					[1]
	(b) (c) (b)	(b) (i) (ii) (iii) (a) (b) (iii) (iii)	(b) (i) positive (ii) $V_P = ratio (V_P = ratio (ratio (ra$	of change of (b) (i) positive (ii) $V_P = \sqrt{2}$ ratio = 2 $= 3$ ($V_P = V_R$ (ratio = 2 (ratio = 9 (c) (i) e.g. (out e.g. rang (ii) sketch: (a) sin in s (b) (i)1 5.4 (i)2 V / (i)3 tim (ii)1 Q	ratio = $240 \sqrt{2} / 9$ = 38 ($V_P = V_{RMS} / \sqrt{2}$ gives ratio = 18.9 and scores $1/3$) (ratio = $240 / 9 = 26.7$ scores $1/3$) (ratio = $9 / (240 / \sqrt{2}) = 0.0265$ is inverted ratio and scores $1/3$) (c) (i) e.g. (output) p.d. / voltage / current does not fall to zero e.g. range of (output) p.d. / voltage / current is reduced (any sensible answer) (ii) sketch: same peak value at start of discharge correct shape between one peak and the next (a) single diode	of change of (magnetic) flux (linkage) (b) (i) positive terminal identified (upper connection to load) (ii) $V_P = \sqrt{2} \times V_{\text{RMS}}$ C1 ratio = $240 \sqrt{2} / 9$ C1 = 38 A1 ($V_P = V_{\text{RMS}} / \sqrt{2}$ gives ratio = 18.9 and scores $1/3$) (ratio = $240 / 9 = 26.7$ scores $1/3$) (ratio = $9 / (240 / \sqrt{2}) = 0.0265$ is inverted ratio and scores $1/3$) (c) (i) e.g. (output) p.d. / voltage / current does not fall to zero e.g. range of (output) p.d. / voltage / current is reduced (any sensible answer) B1 (ii) sketch: same peak value at start of discharge correct shape between one peak and the next A1 (a) single diode

Q11.

6 (a)	(i)	peak voltage = 6√2 peak voltage = 8.48 V			[2]
	(i	i)	zero because either no current in circuit (and $V = IR$) or all p.d. across diode		B1	[1]
(b)			form: half-wave rectification peak height at about 4.25 cm half-period spacing of 2.0 cm v±¼ square for height and half-period)		B1 B1 B1	[3]
(c)			capacitor shown in parallel with resistor		B1	[1]
	(i	i)	either energy = $\frac{1}{2}CV^2$ or = $\frac{1}{2}QV$ and $Q = CV$ = $\frac{1}{2} \times 180 \times 10^{-6} \times (6\sqrt{2})^2$ = 6.48×10^{-3} J		C1 C1 A1	[3]
	(i	ii)	either fraction = 0.43 ² or final energy = 1.2 mJ fraction = 0.18		C1 A1	[2]
Q12.						
6	(a)	(i)	either prevent loss of magnetic flux or improves flux linkage with secondary	B1	[1]	
		(ii)	reduces eddy current (losses) reduces losses of energy (in core)	B1 B1	[2]	
	(b)	(i)	(induced) e.m.f. proportional to / equal to rate of change of (magnetic) flux (linkage)	M1 A1	[2]	
		(ii)	changing current in primary gives rise to (1) changing flux in core (1) flux links with the secondary coil (1) changing flux in secondary coil, inducing e.m.f. (1)			

Page 4	Mark Scheme	Syllabus	Pape	r		
17 1 11	GCE A/AS LEVEL – October/November 2008	9702	04		04	
(c) e.g.	any three, 1 each to max 3) can change voltage easily / efficiently		В3	[3]		
high voltage transmission reduces power losses (any two sensible suggestions, 1 each)			B2	[2]		

© UCLES 2008

7	(a)	e.g	. more (output) power available . less ripple for same smoothing capacitor v sensible suggestion	.B1	[1]
	(b)	(i)	curve showing half-wave rectification	.B1	[1]
		(ii)	similar to (i) but phase shift of 180°	.B1	[1]
	(c)	(i)	correct symbol, connected in parallel with R	.B1	[1]
		(ii)	1 larger capacitor / second capacitor in parallel with R	. B1	[1]
			2 same peak values		[2]
				[Total	: 7]
Q14					
6	(a)	(i)	e.g. prevent flux losses / improve flux linkage	B1	[1]
		(ii)	flux in core is changing e.m.f. / current (induced) in core induced current in core causes heating	B1 B1 B1	[3]
	(b)	(i)	that value of the direct current producing same (mean) power / heating in a resistor	M1 A1	[2]
		(ii)	power in primary = power in secondary $V_P I_P = V_S I_S$	M1 A1	[2]
Q15					
6	(a		wer / heating depends on I^2 independent of current direction	M1 A1	[2]
	(b	I_0	ther maximum power = $I_0{}^2R$ or average power = $I_{\rm RMS}{}^2R$ = $\sqrt{2} \times I_{\rm RMS}$	M1 M1	
			aximum power = 2 × average power tio = 0.5	A1	[3]

Q16.

6	(a)	(i)	period = $1/50$ $t_1 = 0.03 \text{ s}$	C1 A1	[2]
		(ii)	peak voltage = 17.0 V	A1	[1]
		(iii)	r.m.s. voltage = $17.0/\sqrt{2}$ = 12.0 V	A1	[1]
		(iv)	mean voltage = 0	A1	[1]
	(b)	pov	$ver = V^2/R = 12^2/2.4 = 60 W$	C1 A1	[2]
Q17					
5	(a)		oply connected correctly (to left & right) d connected correctly (to top & bottom)	B B	
	(b)	oler e	. power supplied on every half-cycle greater <u>average/mean</u> power y sensible suggestion, 1 mark)	В	1 [1]
	(c)	(i)	reduction in the variation of the output voltage/current	В	1 [1]
		(ii)	larger capacitance produces more smoothing either product RC larger or for the same load	M A	
Q18	3.				
6	(a)	(i)	connection to 'top' of resistor labelled as positive	B1	[1]
		(ii)	diode B and diode D	B1	[1]
	(b)	(i)	$V_P = 4.0 \text{ V}$ mean power = $V_P^2/2R$ = $4^2/(2 \times 2700)$	C1 C1	
			$= 2.96 \times 10^{-3} \text{W}'$	A1	[3]
		/::·			2 4 E
		(11)	capacitor, correct symbol, connected in parallel with R	B1	[1]

Q19.

7	(a)	(i)	either heating effect in a resistor ∞ (current) ² square of value of an alternating current is always positive so heating effect or current moves in opposite directions in resistor during half-cycles heating effect is independent of direction	B1 B1 A0 (B1) (B1)	[2]
		(ii)	that value of the direct current producing the same heating effect (as the alternating current) in a resistor	M1 A1	[2]
	(b)	(i)	induced e.m.f. proportional to the rate of change of (magnetic) flux (linkage)	M1 A1	[2]
		(ii)	flux in core is in phase with current in the primary coil (induced) e.m.f. in secondary because coil cuts the flux flux and rate of change of flux are not in phase	B1 B1 B1	[3]